New Advances in GraphHTN: Identifying Independent Subproblems in Large HTN Domains

نویسندگان

  • Amnon Lotem
  • Dana S. Nau
چکیده

We describe in this paper a new method for extracting knowledge on Hierarchical Task-Network (HTN) planning problems for speeding up the search. This knowledge is gathered by propagating properties through an AND/OR tree that represents disjunctively all possible decompositions of an HTN planning problem. We show how to use this knowledge during the search process of our GraphHTN planner, to split the current refined planning problem into independent subproblems. We also present new experimental results comparing GraphHTN with ordinary HTN decomposition (as implemented in the UMCP planner). The comparison is performed on a set of problems from the UM Translog domain a large HTN transportation domain that is considerably more complicated than the well known “logistics” domain. Finally, so that we could compare GraphHTN with actionbased planners such as IPP and Blackbox, we translated the UM Translog domain into a STRIPS-style representation. We found that GraphHTN performed considerably better on UM Translog than IPP and Blackbox.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Planning Graphs for Solving HTN Planning Problems

In this paper we present the GraphHTN algorithm, a hybrid planning algorithm that does Hierarchical Task-Network (HTN) planning using a combination of HTN-style problem reduction and Graphplan-style planning-graph generation. We also present experimental results comparing GraphHTN with ordinary HTN decomposition (as implemented in the UMCP planner) and ordinary Graphplan search (as implemented ...

متن کامل

E2DR: Energy Efficient Data Replication in Data Grid

Abstract— Data grids are an important branch of gird computing which provide mechanisms for the management of large volumes of distributed data. Energy efficiency has recently emerged as a hot topic in large distributed systems. The development of computing systems is traditionally focused on performance improvements driven by the demand of client's applications in scientific and business domai...

متن کامل

Learning Hierarchical Task Networks for Nondeterministic Planning Domains

This paper describes how to learn Hierarchical Task Networks (HTNs) in nondeterministic planning domains, where actions may have multiple possible outcomes. We discuss several desired properties that guarantee that the resulting HTNs will correctly handle the nondeterminism in the domain. We developed a new learning algorithm, called HTN-MAKERND , that exploits these properties. We implemented ...

متن کامل

Exploiting Expert Knowledge in Factored POMDPs

Decision support in real-world applications is often challenging because one has to deal with large and only partially observable domains. In case of full observability, large deterministic domains are successfully tackled by making use of expert knowledge and employing methods like Hierarchical Task Network (HTN) planning. In this paper, we present an approach that transfers the advantages of ...

متن کامل

Decomposition-based evolutionary algorithm for large scale constrained problems

Cooperative Coevolutionary algorithms (CC) have been successful in solving large scale optimization problems. The performance of CC can be improved by decreasing the number of interdependent variables among decomposed subproblems. This is achieved by first identifying dependent variables, and by then grouping them in common subproblems. This approach has potential because so far no grouping tec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000